Reinvención de soluciones inteligentes para impulsar las ventas de bienes de consumo por 5%

Si es un entusiasta de la digitalización experto en tecnología, sabrá acerca de los recomendadores y cómo tienen el potencial de cambiar la forma en que trabaja con sugerencias e información. Sin embargo, pocas personas saben cuánto trabajo se necesita para construir un motor de recomendaciones altamente efectivo y las dificultades reales que enfrentan los científicos de datos para lograr estos resultados.

Construir un recomendador desde cero, basado en la corazonada de que se convertirá en uno de los inventos más buscados de todos los tiempos, es una historia que vale la pena leer. Preeti Menon, trabajando para perfeccionar un avance tecnológico que es relativamente nuevo y acelera, comparte su historia y lucha para hacer de Ivy Recommender uno de los recomendadores más precisos y prácticos disponibles actualmente en el mercado.

Concebir el futuro

Nuestros estrategas de producto, como de costumbre, concibieron esta idea antes de tiempo y la llevaron adelante. Nuestro industria de bienes de consumo El conocimiento y nuestra pasión por hacer que nuestras soluciones sean mejores y más inteligentes nos ayudaron a pasar de una plataforma comercial unificada a una ruta inteligente al mercado. Podríamos crear un modelo funcional con una precisión de 95% en 1 año y medio.

Soluciones Inteligentes
Soluciones Inteligentes

Perfeccionando el algoritmo 

Desde el principio, nuestros equipos tenían una misión, una idea y una visión enfocadas. Creamos un algoritmo casi perfecto que funcionaría para empresas que variaban mucho en tamaño y ofertas. A pesar de todos los altibajos durante la creación de la solución, creíamos que un factor inteligente cambiaría la forma en que las empresas de bienes de consumo se enfocaban en sus clientes.

Con científicos de datos y desarrolladores a bordo, el equipo personalizó el algoritmo preseleccionado para satisfacer las necesidades específicas de nuestro nicho. La optimización rápida nos ayudó a conocer y dominar la industria. estándares de rendimiento del recomendador. A medida que avanzaba el desarrollo, el equipo también se dio cuenta de que el modelo estático habitual no funcionaría, por lo que tuvimos que recrear un modelo dinámico que utilizara los resultados de operaciones anteriores y lo reprocesara para aprender, aumentando así la precisión de los resultados del motor AI&ML.

Improvisando la actuación

El equipo esperaba brindarles a nuestros clientes un aumento de ingresos de al menos 2% al promover las ventas en la misma tienda. Este ROI fue una apuesta que cualquier CIO del mundo de CPG habría aceptado gustosamente. Con el tiempo, nuestro equipo logró un crecimiento de ingresos de 5% con nuestro algoritmo dinámico para un puñado de clientes, y esperamos ver un número aún mejor.

Con años de datos, nuestra solución selecciona información inteligente y recomendaciones procesables que simplifican las estrategias de ventas de los agentes de campo, permitiéndoles alcanzar sus KPI más rápido mientras ayuda a los fabricantes a generar más ingresos al implementar nuestra solución.

Nacido empresas de consumo masivo digitales han estado recopilando datos al azar, mientras que las empresas heredadas nunca tuvieron la oportunidad de ver sus datos en una sola ubicación. A lo largo de los años, hemos ayudado a algunos grandes conglomerados a recopilar y almacenar datos en un solo data mart para identificar y recuperar información procesable. Nuestro equipo obtuvo apoyo y recomendaciones constantes de nuestros clientes, quienes de inmediato nos ayudaron a incorporar valiosos aportes para hacer que su recomendador sea más sólido y poderoso.

Casos de uso futuristas para beneficiar a los clientes

Con acceso a datos históricos, Recomendador de hiedra puede guiar a los equipos de ventas con recomendaciones probadas en tiendas del mismo segmento en función de la demografía para ayudar a producir resultados seguros. Estas recomendaciones incluyen Next best SKU, Must Sell Lines, además de brindar capacitación y desarrollo para los agentes de la fuerza de campo.
—–

Concluyamos con una cita de Preeti, “Los sistemas de recomendación inteligentes aún no han arrasado en el mundo de los CPG, y ya estamos construyendo un producto que promete escalabilidad y éxito asegurado”.

Obtenga más información sobre el recomendador de Ivy aquí

Publicado por diciembre 7, 2022 por Ivy Mobility

Compartir este

Mensajes recientes

Van Sales Software for Improved Order and Delivery Management

The Middle Eastern markets flourish and thrive on van sales businesses. The CAGR of commercial vehicles in the Middle East has been growing at about…

6 Factors to Consider for Your Distribution Management Strategy

Distributor Management Systems (DMS) are fundamental to the route-to-market strategy of any consumer goods company. A comprehensive distributor system…

Software de distribución y transformación digital en 2023

La pandemia ayudó a las empresas a adoptar la transformación digital mucho más rápido de lo previsto, y el objetivo final de la transformación digital es para la organización...

es_ESSpanish